Page 84 - 2025年第56卷第8期
P. 84

.
               [ 19] 窦国仁,赵士清,黄亦芬 .  河道二维全沙数学模型的研究[J]  水利水运科学研究,1987(2):1-12.
                                                                          .
               [ 20] 张红武,江恩惠,白咏梅,等 .  黄河高含沙洪水模型的相似律[M] 郑州: 河南科学技术出版社,1994.
                                                                             .
               [ 21] 张红武,赵连军,曹丰生 .  游荡河型成因及其河型转化问题的研究[J]  人民黄河,1996(10):11-15,61.
                                                           .
               [ 22] 张红武,张清 .  黄河水流挟沙力的计算公式[J]  人民黄河,1992(11):7-9.
               [ 23] 侯 琳 , 张 红 武 , 赵 君 驰 , 等 .  水 流 挟 沙 力 公 式 的 理 论 剖 析 与 检 验[J]  水 利 学 报 , 2023, 54(5): 563-
                                                                                .
                      574,586.
                                                                  .
               [ 24] 杨张辉,张红武 .  西方学者水流挟沙力公式剖析研究[J]  水利学报,2024,55(12):1484-1495.
                                                                            .
               [ 25] 李琳琪,张红武,侯琳,等. 河流动床阻力影响参数分析及其计算研究[J] 水利学报,2023,54(12):496-1506.
               [ 26] 张罗号 .  沙质河床推移质输沙率计算研究[J]  水利学报,2017,48(4):467-472.
                                                         .
               [ 27] 张红武,张罗号,赵晨苏 .  基于面积型 Froude 数的河型判数与黄河河道最大输沙流量及河槽宽深尺度[J]
                                                                                                          .
                      泥沙研究,2019,44(2):11-17,47.
                                                          .
               [ 28] 张楚汉,王光谦,陈祖煜,等 .  黄河九篇[M]  北京: 科学出版社,2023.
               [ 29] LI L Q,ZHANG H W,HOU L,et al.  An improved method and the theoretical equations for river regulation lines
                         .
                      [J]  Sustainability,2023,15(3):1965.
               [ 30] 黄河勘测规划设计有限公司 .  黄河未来水沙情势变化及水沙过程设计[R]  郑州:黄河勘测规划设计有限公
                                                                                .
                      司,2013.
                                                             .
               [ 31] 马睿 .  黄河输沙能力提升机理及治理方案研究[D]  北京:清华大学,2018.
               [ 32] 张红武,侯琳,李琳琪 .  黄河治理巨大的减沙成就与未来输沙需水量[J]  中国水利,2021(21):17-20.
                                                                               .
                                                       .
               [ 33] 胡春宏 .  黄河水沙变化与下游河道改造[J]  水利水电技术,2015,46(6):10-15.
                                                                .
               [ 34] 王光谦,钟德钰,吴保生 .  黄河泥沙未来变化趋势[J]  中国水利,2020(1):9-12,32.
               [ 35] HOU L,ZHANG H W,LI L Q,et al.  A method for calculating water demand for sediment transport based on the
                      principles of river dynamics[J]  Water,2023,15:3514.
                                             .
                 Simulation and prediction of water demand for sediment transport in the lower Yellow River


                               1,2              2           2        2              1            1





                        LI Linqi ,ZHANG Hongwu ,FU Xudong ,HOU Lin ,GUO Qingchao ,HUANG Hai


                               (1. China Institute of Water Resources and Hydropower Research,Beijing  100048,China;



                           2. Department of Hydraulics and Hydropower Engineering,Tsinghua University,Beijing  100084,China)

                Abstract:Reasonable prediction of water demand for sediment transport in the lower reaches of the Yellow River is


                crucial  for  optimizing  water-sediment  regulation,ensuring  flood  control  safety,and  enhancing  the  effectiveness  of
                river  channel  management.  This  study  introduces  a  non-equilibrium  sediment  transport  equation  incorporating  the
                average sediment concentration distribution coefficient a  and the unsaturated coefficient f  to calculate the variation
                                                           *                         S
                in sediment concentration along the river course. A numerical model of channel erosion and deposition is constructed,
                with the integrated riverbed stability index serving as a constraint for river regulation projects. The model is validated
                using measured water and sediment data from the lower Yellow River. By simulating 10 scenarios with different water

                and sediment conditions,the study finds a positive correlation between sediment transport water demand and sedi‐
                ment inflow. When the sediment inflow exceeds 500 million t,the growth in water demand tends to slow down. Fur‐


                thermore,an increase in the degree of river regulation effectively reduces the sediment transport water demand. For
                instance,when the integrated riverbed stability index Z  increases from 4 to 4.5,the required water volume for the


                                                           W
                same  sediment  inflow  can  be  reduced  by  approximately  10%.  Further  simulation  predictions  suggest  that  when  the

                annual sediment transport volume in the lower reaches of the Yellow River is between 200 and 300 million t,the cor‐
                responding water demand ranges from 10 to 15.5 billion m³,and the current water resource allocation is generally suf‐

                ficient to meet sediment transport needs. The findings of this study provide a scientific basis for water-sediment regu‐
                lation and river channel management in the lower Yellow River and offer valuable insights into water-sediment regula‐
                tion in high-sediment rivers.



                Keywords:water demand for sediment transportation;lower reaches of the Yellow River;integrated riverbed stabil‐

                ity index;numerical model;bedload transport

                                                                                     (责任编辑:王  婧)
                — 1048   —
   79   80   81   82   83   84   85   86   87   88   89