Page 42 - 2022年第53卷第2期
P. 42

[ 15] 刘保国,孙钧 . 岩体粘弹性本构模型辨识的一种方法[J]. 工程力学,1999,16(1):18-25 .
                [ 16] 刘世君,徐卫亚,邵建富 . 岩石粘弹性模型辨识及参数反演[J]. 水利学报,2002(6):101-105 .
                [ 17] 金银富 . 基于优化理论的土体本构模型参数识别研究[D]. 上海:上海交通大学,2017 .
                [ 18] 杨柳 . 隧道围岩本构模型辨识及其在隧道稳定性评估中的应用[D]. 武汉:武汉理工大学,2018 .
                [ 19] 袁 勇 ,孙 钧 . 岩 体 本 构 模 型 反 演 识 别 理 论 及 其 工 程 应 用[J]. 岩 石 力 学 与 工 程 学 报 ,1993,12(3):
                       232-239 .
                [ 20] 成枢 . 模型和参数识别理论与方法[J]. 煤炭学报,2000,25(S1):46-48 .
                [ 21] 高玮,郑颖人,基于遗传算法的岩土本构模型辨识[J]. 岩石力学与工程学报,2002,21(1):9-12 .
                [ 22] 程马遥,金银富,尹振宇,等 . 改进 DE-TMCMC 法及其在高级模型参数识别上的应用[J]. 岩土工程学报,
                       2019,41(12):2281-2289 .
                [ 23] KAN Guangyuan,YAO Cheng,LI Qiaoling,et al . Improving event-based rainfall-runoff simulation using an en⁃
                       semble artificial neural network based hybrid data-driven model[J]. Stochastic Environmental Research & Risk
                       Assessment,2015,29(5):1-26 .
                [ 24] 李小奇,郑东健,鞠宜朋 . 基于 Copula 熵理论的大坝渗流统计模型因子优选[J]. 河海大学学报(自然科学
                       版),2016,44(4):370-376 .
                [ 25] DAI Bo,GU Chongshi,ZHAO Erfeng,et al . Statistical model optimized random forest regression model for con⁃
                       crete dam deformation monitoring[J]. Structural Control and Health Monitoring,2018,25:e2170 .
                [ 26] 李明超,任秋兵,孔锐,等 . 多维复杂关联因素下的大坝变形动态建模与预测分析[J]. 水利学报,2019,
                       50(6):687-698 .
                [ 27] 储海宁 . 混凝土坝内部观测技术[M]. 北京:水利电力出版社,1989
                [ 28] 方开泰,马长兴 . 正交与均匀试验设计[M]. 北京:科学出版社,2001 .
                [ 29] 张怡,顾冲时,张琳琳 . 佛子岭连拱坝变形性态分析[J]. 水力发电,2002,28(12):51-54 .

                         Optimization method of optimal statistical model of dam monitoring data



                                             1
                                                          1
                                                                           2
                              HUANG Yaoying ,HE Yiyang ,SHEN Zhenzhong ,LI Chunguang      3
                       (1. College of Hydraulic & Environmental Engineering,China Three Gorges University,Yichang  443002,China;
                          2. College of Water Conservancy and Hydropower Engineering, Hohai University,Nanjing  210098,China;
                                      3. State Key Laboratory of Geomechanics and Geotechnical Engineering,
                              Institute of Rock and Soil Mechanics,Chinese Academy of Sciences,Wuhan  430071,China)

                   Abstract:The existing reported mathematical models of dam monitoring data mainly take the fitting accura⁃
                   cy as the objective function, ignoring the quantitative analysis of model simplicity principle. According to
                   the perspective of system theory, a method for optimizing the optimal statistical model of dam monitoring
                   data is proposed in this paper on the basis of the optimization principles of good model fitting,test validi⁃
                   ty and model simplicity. First, monitoring data series are divided into regression data and test data, and
                   the set of statistical model is determined on the basis of priori knowledge. Then the parameters of statisti⁃
                   cal models are identified based on the regression data by using the method of regression or optimization.
                   Next,the identified statistical models are verified based on the test data. Finally,the fitting accuracy,mod⁃
                   el factor number and test effect are standardized, and based on the calculated decision content, the opti⁃
                   mal statistical model is obtained. Combined with the monitoring data of horizontal displacement of the No.
                   11# buttress of the Meishan dam,the model optimization method is implemented in detail. The research re⁃
                   sults show that the monitoring data of different measuring points are corresponding to different statistical
                   models,the optimal statistical model not only has good fitting and validity of test,but also has the simplic⁃
                   ity of model.
                   Keywords: monitoring data; optimal statistical model; optimization principle; model optimization method;
                   decision content
                                                                                   (责任编辑:韩         昆)




                 — 164  —
   37   38   39   40   41   42   43   44   45   46   47