Page 73 - 2022年第53卷第12期
P. 73

分解集成水文预测 模型的 正确 建立 提供参 考,也可 为非平 稳 非 线 性 水 文 序 列 的 实 际 预 报 工 作 提 供
              依据。


              参 考 文 献:


                [ 1] YASEENZM,JAAFARO,DEORC,etal.Stream - flowforecastingusingextremelearningmachines:Acase
                       studyinasemi - aridregioninIraq[J].JournalofHydrology,2016,542:603 - 614.
                [ 2] BARZEGARR,FIJANIE,MOGHADDAM AA,etal.Forecastingofgroundwaterlevelfluctuationsusingen
                       semblehybridmulti - waveletneuralnetwork - basedmodels[J].ScienceoftheTotalEnvironment,2017,599:
                      20 - 31.
                [ 3] 王树威,李建林,崔延华,等.混沌理论与 BPNN耦合的径流中长期预测模型[J].水资源与水工程学报,
                      2021,32(3):73 - 79.
                [ 4] 康艳,杨沁瑜,张芳琴,等.基于 Box - Cox变换与 Lasso回归的支持向量回归模型在月径流预报中的应用
                       [J].应用基础与工程科学学报,2022,30(1):27 - 39.
                [ 5] ZUOGG,LUOJG,WANGN,etal.Two - stagevariationalmodedecompositionandsupportvectorregression
                       forstreamflowforecasting[J].HydrologyandEarthSystem Sciences,2020,24(11):5491 - 5518.
                [ 6] ADNANRM,KISIO,MOSTSFARR,etal.Thepotentialofanovelsupportvectormachinetrainedwithmodi
                       fiedmayflyoptimizationalgorithmforstreamflowprediction [J].HydrologicalSciencesJournal - JournaldesSciences
                       Hydrologiques ,2022,67(2):161 - 174.
                [ 7] FENGZK,NIUW J,TANGZY,etal.Monthlyrunofftimeseriespredictionbyvariationalmodedecomposition
                       andsupportvectormachinebasedonquantum- behavedparticleswarm optimization [J].JournalofHydrology,
                      2020,583:124627.
                [ 8] MENGEH,HUANGSZ,HUANGQ,etal.Arobustmethodfornon - stationarystreamflowpredictionbasedon
                       improvedEMD - SVM model[J].JournalofHydrology,2019,568:462 - 478.
                [ 9] 梁浩,黄生志,孟二浩,等.基于多种混合模型的径流预测研究[J].水利学报,2020,51(1):112 - 125.
                [10] ZUOGG,LUOJG,WANGN,etal.Decompositionensemblemodelbasedonvariationalmodedecomposition
                       andlongshort - term memoryforstreamflowforecasting[J].JournalofHydrology,2020,585:124776.
                [11] NIUW J,FENGZK,CHENYB,etal.Annualstreamflowtimeseriespredictionusingextremelearningmachine
                       basedongravitationalsearchalgorithmandvariationalmodedecomposition [J].JournalofHydrologicEngineering,
                      2020,25(5):04020008.
                [12] HEXX,LUOJG,ZUOGG,etal.Dailyrunoffforecastingusingahybridmodelbasedonvariationalmodede
                       compositionanddeepneuralnetworks [J].WaterResourcesManagement,2019,33(4):1571 - 1590.
                [13] 王斌,张洪波,辛琛,等.基于贝叶斯模型加权平均法的径流序列高频分量预测研究[J].水力发电学报,
                      2016,35(5):75 - 83.
                [14] JIANGZQ,LIRB,JICM,etal.Waveletanalysis - basedprojectionpursuitautoregressionmodelanditsappli
                       cationintherunoffforecastingofLiXiangjiangbasin [J].HydrologicalSciencesJournal - JournaldesSciences
                       Hydrologiques,2018,63(12):1817 - 1830.
                [15] XUZX,ZHOUJZ,MOL,etal.Anovelrunoffforecastingmodelbasedonthedecomposition - integration - pre
                       dictionframework [J].Water,2021,13(23):3390.
                [16] ZHANGXL,PENGY,ZHANGC,etal.Arehybridmodelsintegratedwithdatapreprocessingtechniquessuitable
                       formonthlystreamflowforecasting?Someexperimentevidences[J].JournalofHydrology,2015,530:137 - 152.
                [17] DUKC,ZHAOY,LEIJQ.Theincorrectusageofsingularspectralanalysisanddiscretewavelettransforminhy
                       bridmodelstopredicthydrologicaltimeseries [J].JournalofHydrology,2017,552:44 - 51.
                [18] FANGW,HUANGSZ,RENK,etal.Examiningtheapplicabilityofdifferentsamplingtechniquesinthedevel
                       opmentofdecomposition - basedstreamflowforecastingmodels [J].JournalofHydrology,2019,568:534 - 550.
                [19] KARTHIKEYANL,KUMARDN.PredictabilityofnonstationarytimeseriesusingwaveletandEMDbasedARMA
                       models[J].JournalofHydrology,2013,502:103 - 119.
                [20] 杨锡运,张艳峰,叶天泽,等.基于朴素贝叶斯的风电功率组合概率区间预测 [J].高 电 压 技 术,2020,

                                                                                                   4
                                                                                              —   1 6 5 —
   68   69   70   71   72   73   74   75   76   77   78