Page 74 - 2022年第53卷第12期
P. 74

46(3):1099 - 1108.
                [21] LIJ,SONGSS,KANGY,etal.Predictionofurbandomesticwaterconsumptionconsideringuncertainty[J].
                       JournalofWaterResourcesPlanningandManagement,2021,147(3):05020028.
                [22] GUOTL,SONGSS,MAW J.Pointandintervalforecastingofgroundwaterdepthusingnonlinearmodels[J].
                       WaterResourcesResearch ,2021,57(12):e2021WR030209.
                [23] 王晓东,鞠邦国,刘颖明,等.基于 QR - NFGLSTM与核密度估计的风电功率概率预测[J].太阳能学报,
                      2022,43(2):479 - 485.
                [24] DRAGOMIRETSKIYK,ZOSSOD.Variationalmodedecomposition[J].IEEETransactionsonSignalProcessing,
                      2014,62(3):531 - 544.
                [25] 王若恒.基于 LSTM的风电功率区间预测研究[D].武汉:华中科技大学,2018.



                         Anewstepwisedecompositionensemblemodelbasedontwo - stageparticle
                                  swarm optimizationalgorithm fortherunoffprediction

                                                                       1,2
                                                         1,2
                                         1,2
                                                                                        1,2
                               GUOTianli ,SONGSongbai ,ZHANGTe ,WANGHuimin
                       (1.CollegeofWaterResourcesandArchitecturalEngineering,NorthwestA&FUniversity,Yangling 712100,China;
                         2.KeyLaboratoryofAgriculturalSoilandWaterEngineeringinAridandSemiaridAreas,MinistryofEducation,
                                           NorthwestA&FUniversity,Yangling 712100,China)
                  Abstract:Thetraditionaldecompositionensemblerunoffpredictionmodelfirstlydecomposestheentirerunoff
                  seriesintoseveralsubseries ,andthendividesthesubseriesintotrainingandvalidationperiodsformodeling,
                  whichwronglytreatsthepredictordataofvalidationperiodasknowndataandisdifficulttobeappliedtoactualrun
                  offforecasting.Moreover ,thepredictionresultsofsuchmodelsareonlydefinitevalues,whichisdifficulttode
                  scribethepredictionuncertaintycausedbytherandomnessandvolatilityofrunoffseries.Tosolvetheaboveprob
                  lems ,thisstudyproposesastepwisedecompositionensemble(VMD - SVM- KDE)modelcombiningvariablemode
                  decompositionmethod ,supportvectormachinemodelandkerneldensityestimationmethod,whichperformsboth
                  pointpredictionandintervalprediction,andproposesatwo - stageparticleswarm optimization(TSCPSO)algo
                  rithm.ThemonthlyrunoffseriesoftheYellowRiverBasinisusedtoevaluatethemodelperformance ,andthe
                                                                                              2
                  studyresultsshowthat:(1)theVMD - SVM- KDEmodelimprovesthecoefficientofdetermination(R)andNash
                  efficiencycoefficient(NSE)valuesofthesingleSVM- KDEmodelfromtherangeof0.145to0.630totherangeof
                  0.872to0.921,andreducestheintervalaveragedeviation(INAD)valuesfromtherangeof0.046to95.844tothe
                  rangeof0.005to0.034 ,indicatingthattheVMD - SVM- KDEmodelsignificantlyimprovesthepointpredictionand
                  intervalpredictionperformanceofasingleSVM- KDEmodel ;(2)comparedwiththetraditionalone - stagePSOal
                                                      2
                  gorithm ,theTSCPSOalgorithmimprovestheR andNSEvaluesofthesinglemodelfrom therangeof0.145to
                  0.480totherangeof0.309to0.630 ,andreducestheINADvaluefromtherangeof48.813to95.844totherange
                                                  2
                  of0.046to0.195 ,andalsoimprovestheR andNSEvaluesofthedecompositionensemblemodelfromtherangeof
                  0.872to0.912totherangeof0.876to0.921 ,andreducestheINADvaluesfromtherangeof0.007to0.034tothe
                  rangeof0.005to0.014 ,indicatingthattheTSCPSOoptimizationalgorithmovercomestheoverfittingproblemofsup
                  portvectormachinemodelsandeffectivelyimprovesthepredictionaccuracyofthesingleanddecompositionensemble
                  models ;(3)theVMD - SVM- KDE - TSCPSOmodeladdressedthemistakesoftraditionaldecompositionensemble
                  modelsthatforecastfactordataofvalidationperiod ,andhashigheraccuracyofpointpredictionandintervalpredic
                          2
                  tionwithR andNSEvaluesofabout0.9andtheINADvaluesrangingfrom0.005to0.014.TheVMD - SVM - KDE -
                  TSCPSOmodelcanprovideabasisforpracticalforecastingofnon - stationaryandnon - linearhydrologicalseries.
                  Keywords:runoffprediction;intervalprediction;decompositionensemblemodel;two - stageparticleswarm op
                  timizationalgorithm ;variablemodedecomposition;supportvectormachine

                                                                                    (责任编辑:于福亮)





                —  1 4 6 —
                     6
   69   70   71   72   73   74   75   76   77   78   79