Page 114 - 水利学报2021年第52卷第1期
P. 114
[ 8 ] 司政,黄灵芝,宋志强,等 . 人工短缝对严寒地区碾压混凝土坝越冬层面应力的释放效果[J]. 西安理工大
学学报,2013,29(1):38-44 .
[ 9 ] NGUYEN V,TONG F,NGUYEN V N . Modeling of autogenous volume deformation process of RCC mixed with
MgO based on concrete expansion experiment[J]. Construction and Building Materials,2019,210:650-659 .
[ 10] 张国新 . SAPTIS:结构多场仿真与非线性分析软件开发及应用(之一)[J]. 水利水电技术,2013,44(1):
31-35,44 .
[ 11] 周秋景,张国新 . SAPTIS:结构多场仿真与非线性分析软件开发及应用(之二)[J]. 水利水电技术,2013,
44(9):39-43,48 .
[ 12] 张国新,刘毅,李松辉,等 .“九三一”温度控制模式的研究与实践[J]. 水力发电学报,2014,33(2):179-184 .
[ 13] 张国新,刘毅,刘有志,等 . 高混凝土坝温控防裂研究进展[J]. 水利学报,2018,49(9):1068-1078 .
[ 14] 林鹏,李庆斌,周绍武,等 . 大体积混凝土通水冷却智能温度控制方法与系统[J]. 水利学报,2013,44
(8):950-958 .
[ 15] 李松辉,张国新,刘毅,等 . 大体积混凝土防裂智能监控技术及工程应用[J]. 中国水利水电科学研究院学
报,2018,16(1):9-15 .
[ 16] LI M,ZHANG M,HU Y,et al . Mechanical properties investigation of high-fluidity impermeable and anti-crack⁃
ing concrete in high roller-compacted concrete dams[J] . Construction and Building Materials,2017,156:
861-870 .
[ 17] HAN B,ZHANG L,OU J . Smart and Multifunctional Concrete Toward Sustainable Infrastructures[M]. Singa⁃
pore:Springer,2017 .
[ 18] 赵庆新,张津瑞,赵冉冉 . 炭黑掺量对水泥基材料微波吸收性能的影响及机理[J]. 硅酸盐学报,2011,39
(12):2013-2020 .
[ 19] DOWNEY A,D'ALESSANDRO A,BAQUERA M,et al . Damage detection,localization and quantification in
conductive smart concrete structures using a resistor mesh model[J] . Engineering Structures,2017,148:
924-935 .
[ 20] WON J,KIM C,LEE S,et al . Thermal characteristics of a conductive cement-based composite for a snow-melt⁃
ing heated pavement system[J]. Composite Structures,2014,118:106-111 .
[ 21] MALAKOOTI A,THEH W,SADATI S,et al . Design and full-scale implementation of the largest operational
electrically conductive concrete heated pavement system[J]. Construction and Building Materials,2020,255:
119229 .
[ 22] SASSANI A,CEYLAN H,KIM S,et al . Influence of mix design variables on engineering properties of carbon fi⁃
ber-modified electrically conductive concrete[J]. Construction & Building Materials,2017,152:168-181 .
[ 23] ZHANG J,XU L,ZHAO Q . Investigation of carbon fillers modified electrically conductive concrete as grounding
electrodes for transmission towers:computational model and case study[J]. Construction and Building Materials,
2017,145:347-353 .
[ 24] SUN G,LIANG R,LU Z,et al . Mechanism of cement/carbon nanotube composites with enhanced mechanical
properties achieved by interfacial strengthening[J]. Construction and Building Materials,2016,115:87-92 .
[ 25] DONG W,LI W,SHEN L,et al . Piezoresistivity of smart carbon nanotubes(CNTs)reinforced cementitious com⁃
posite under integrated cyclic compression and impact[J]. Composite Structures,2020,241:112106 .
[ 26] LEE H, PARK S, CHO S, et al . Correlation analysis of heating performance and electrical energy of
multi-walled carbon nanotubes cementitious composites at sub-zero temperatures[J] . Composite Structures,
2020,238:111977 .
[ 27] KIM G,YANG B,RYU G,et al . The electrically conductive carbon nanotube(CNT)cement composites for ac⁃
/
celerated curing and thermal cracking reduction[J]. Composite Structures,2016,158:20-29 .
[ 28] WANG C,CHEN Q,FU H,et al . Heat conduction effect of steel bridge deck with conductive gussasphalt con⁃
crete pavement[J]. Construction and Building Materials,2018,172:422-432 .
[ 29] DONG W,LI W,LU N,et al . Piezoresistive behaviours of cement-based sensor with carbon black subjected to
various temperature and water content[J]. Composites Part B:Engineering,2019,178:107488 .
[ 30] WANG D,WANG Q,HUANG Z . Investigation on the poor fluidity of electrically conductive cement-graphite
paste:Experiment and simulation[J]. Materials and Design,2019,169:107679 .
(下转第 119 页)
— 110 —