Page 36 - 2021年第52卷第8期
P. 36

[ 4 ] 蒋志强,武文杰,覃晖,等 . 考虑预报误差的水电站短期调度模糊风险研究[J]. 水力发电学报,2019,38
                      (2):36-46 .
                [ 5 ] 周建中,何中政,贾本军,等 . 水电站长中短期嵌套预报调度耦合实时来水系统动力学建模方法研究及应
                       用[J]. 水利学报,2020,51(6):642-652 .
                [ 6 ] 袁柳 . 水电站短期发电调度不确定性问题及优化方法[D]. 武汉:华中科技大学,2018 .
                [ 7 ] XU W,ZHANG C,PENG Y,et al . A two stage Bayesian stochastic optimization model for cascaded hydropower
                       systems considering varying uncertainty of flow forecasts[J]. Water Resources Research,2017,50:9267-9286 .
                [ 8 ] TAN Q,FANG G H,WEN X,et al . Bayesian stochastic dynamic programming for hydropower generation opera⁃
                       tion based on copula functions[J]. Water Resources Management,2020,34:1589-1607 .
                [ 9 ] LIU H,SUN Y,YIN X,et al . A reservoir operation method that accounts for different inflow forecast uncertain⁃
                       ties in different hydrological periods[J]. Journal of Cleaner Production . 2020,256:120471 .
                [ 10] 唐 国 磊 ,周 惠 成 ,李 宁 宁 ,等 . 一 种 考 虑 径 流 预 报 及 其 不 确 定 性 的 水 库 优 化 调 度 模 型[J]. 水 利 学 报 ,
                       2011,42(6):641-647,656 .
                [ 11] 徐炜 . 考虑中期径流预报及其不确定性的水库群发电优化调度模型研究[D]. 大连:大连理工大学,2014 .
                [ 12] 陈璐,卢韦伟,周建中,等 . 水文预报不确定性对水库防洪调度的影响分析[J]. 水利学报,2016,47(1):
                       77-84 .
                [ 13] 纪昌明,梁小青,张验科,等 . 入库径流预报误差随机模型及其应用[J]. 水力发电学报,2019,38(10):
                       75-85 .
                [ 14] ZHAO T,ZHAO J,YANG D,et al . Generalized martingale model of the uncertainty evolution of streamflow fore⁃
                       casts[J]. Advances in Water Resources,2013,57:41-51 .
                [ 15] ZHAO T,WANG Q,BENNETT J,et al . Quantifying predictive uncertainty of streamflow forecasts based on a
                       Bayesian joint probability model[J]. Journal of Hydrology,2015,528:329-340 .
                [ 16] 张验科,张佳新,邰雨航,等 . 基于 IGMM-Copula 的入库径流过程预报误差随机模拟模型[J]. 水利学报,
                       2021,52(6):689-699 .
                [ 17] 刘章君,郭生练,何绍坤,等 . 基于 Copula 函数的多变量水文不确定性处理器[J]. 水利学报,2018,49
                      (3):332-342 .
                [ 18] 马超,崔喜艳 . 水库月平均流量滚动预报及其不确定性研究[J]. 水力发电学报,2018,37(2):59-67 .
                                Short-term optimal operation model of hydropower station
                                      coupling the integrality of forecast uncertainty


                                                                                     2
                                                                        1
                                 1
                                            1
                                                        1
                     JI Changming ,LIU Yuan ,WANG Yi ,ZHANG Yanke ,CHEN Ping ,WANG Liping           1
                    (1. School of Water Resources and Hydropower Engineering,North China Electric Power University,Beijing  102206,China;
                                 2. Yalong River Hydropower Development Company Ltd.,Chengdu  610051,China)
                   Abstract: The deterministic forecasted streamflow which is input of short-term optimal operation model of
                   hydropower station is highly affected by forecast uncertainty, which may lead to the deviation between the
                   planed operation schemes and actual operation results, causing the water abandon or insufficient output.
                   Hence,based on the process of generate operation schemes,this study analyzed the correlation among fore⁃
                   cast uncertainty in different lead times and constructed the short-term hydropower station optimal operation
                   model coupling the integrality of forecast uncertainty. Taking the Jinxi hydropower station as a case study,
                   the article analyzed the benefit and risk of the proposed model based on the actual total power generation
                   and closeness and compared difference between the proposed model and traditional deterministic optimal
                   model. The results show that the proposed model can effectively increase the actual power generation and
                   the reliability of schemes. Therefore,the proposed model is useful for the short-term hydropower station op⁃
                   timal operation.
                   Keywords:hydropower station;hydropower generation operation;forecast uncertainty;operation risk;close⁃
                   ness

                                                                                   (责任编辑:杨         虹)

                 — 916  —
   31   32   33   34   35   36   37   38   39   40   41